The impact of ionic strength on the adsorption of protons, Pb, Cd, and Sr onto the surfaces of Gram negative bacteria: testing non-electrostatic, diffuse, and triple-layer models.
نویسندگان
چکیده
Bacterial surface adsorption reactions are influenced by electric field effects caused by changes in ionic strength; however, existing datasets are too sparse to definitively constrain these differences or to determine the best way to account for them using thermodynamic models. In this study, we examine the ionic strength dependence of proton and metal adsorption onto the surfaces of Pseudomonas mendocina and Pseudomonas putida by conducting proton, Cd(II), Pb(II), and Sr(II) adsorption experiments over the ionic strength range of 0.001 to 0.6 M. Chosen experimental results are thermodynamically modeled using a non-electrostatic approach, a diffuse layer model (DLM), and a triple-layer model (TLM). The results demonstrate that bacterial surface electric field effects are negligible for proton, Cd, and Pb adsorption onto P. putida and P. mendocina, and that the discrete site non-electrostatic model developed in this study is adequate for describing these reactions. The extent of Sr adsorption is influenced by changes in the bacterial surface electric field; however, the non-electrostatic model better describes Sr adsorption behavior than the DLM or TLM. The DLM and TLM greatly overpredict the effect of the electric field for all adsorption reactions at all ionic strengths tested.
منابع مشابه
Interaction of some heavy metal ions with single walled carbon nanotube
The interaction between some heavy metal ions such as of Pb(II), Cd(II) and Cu(II) ions from aqueous solution adsorbed by single walled carbon nanotube (SWCNTs) and carboxylate group functionalized single walled carbon nanotube (SWCNT-COOH) surfaces were studied by atomic absorption spectroscopy. The effect of contact time, pH, initial concentration of ion, ionic strength and temperature on the...
متن کاملInteraction of some heavy metal ions with single walled carbon nanotube
The interaction between some heavy metal ions such as of Pb(II), Cd(II) and Cu(II) ions from aqueous solution adsorbed by single walled carbon nanotube (SWCNTs) and carboxylate group functionalized single walled carbon nanotube (SWCNT-COOH) surfaces were studied by atomic absorption spectroscopy. The effect of contact time, pH, initial concentration of ion, ionic strength and temperature on the...
متن کاملEffect of pH, Initial Concentration, Background Electrolyte, and Ionic Strength on Cadmium Adsorption by TiO2 and γ-Al2O3 Nanoparticles
The entrance of Cd (II) to aqueous environments causes a major problem to human health. The current article examines the efficiency of TiO2 and γ-Al2O3 nanoparticles in Cd (II) removal from aqueous medium as influenced by different chemical factors, such as pH, initial concentration, background electrolyte, and ionic strength, in accordance with standard experimental methods. It conducts Batch ...
متن کاملEffect of pH, Initial Concentration, Background Electrolyte, and Ionic Strength on Cadmium Adsorption by TiO2 and γ-Al2O3 Nanoparticles
The entrance of Cd (II) to aqueous environments causes a major problem to human health. The current article examines the efficiency of TiO2 and γ-Al2O3 nanoparticles in Cd (II) removal from aqueous medium as influenced by different chemical factors, such as pH, initial concentration, background electrolyte, and ionic strength, in accordance with standard experimental methods. It conducts Batch ...
متن کاملExperimental measurement of proton, Cd, Pb, Sr, and Zn adsorption onto the fungal species Saccharomyces cerevisiae.
Proton, Cd, Pb, Sr, and Zn adsorption onto the fungal species Saccharomyces cerevisiae were measured in bulk adsorption experiments as a function of time, pH, surface: metal ratio, and ionic strength, and we measured the electrophoretic mobility of the cells as a function of pH. We modeled the acid/base properties of the fungal cell wall by invoking a nonelectrostatic surface complexation model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of colloid and interface science
دوره 286 1 شماره
صفحات -
تاریخ انتشار 2005